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Abstract

A rapid Fourier transformed infrared (FT-IR) attenuated total reflectance (ATR) spectroscopic 
is applied to predict the quantity of oil in fresh olive in tree.  The analytical method is evaluated 
by use of validation samples with nearly quantitative oil.  80 samples of olives in oil content, 
which varies between 8 and 21%, picked up in the Moroccan region, were subjected to infrared 
analysis. Analytical data were collected, by Fourier transform infrared spectroscopy (FT-IR) 
applied to the mesocarp of the fresh olives without any preliminary treatment. The objective of 
this study is to develop a calibration model for prediction of oil content in olive fruit by using 
FT-IR spectroscopy before harvest time. The transmission spectra of olive fruit were obtained 
in the wavelength range from 4000 to 600 cm-1. The prediction models were developed by 
partial least square regression (PLS). The values obtained for correlation coefficient for oil 
content and root mean square errors of prediction (RMSEP) are 0.99 and 0.076 respectively. 
This show the capability of FTIR and the important role of chemometric in developing accurate 
models to predict oil content in olive fruit. 

Introduction

Olive (from Olea europaea) is considered one 
of the most widely grown fruit crop in the countries 
of the Mediterranean basin (Amane et al., 1999). 
The olive products, such as olive oil, table olives 
and olive pastes are the basic constitutes of the 
Mediterranean diet due to their benefits for human 
health, besides other applications such as in cosmetics 
field. Olive shows high genetic variability with 
more than 2600 cultivars described (Rugini et al., 
1992), although many of them might be synonyms, 
homonyms (Barranco et al., 2000), ecotypes or the 
result of crosses between neighboring individuals. 
A few of these cultivars are found over large areas 
of cultivation but most have a very local distribution 
(Besnard et al., 2001a). Nowadays, one of the major 
problems in the agricultural–food industry is to set 
down objective tools in order to determine the oil 
yield in olive fruit before extraction. Most of analyses 
used for characterization of cultivars are time-
consuming, expensive and involve a considerable 
amount of manual work. Very often, complex 
chemical treatment of the sample and the use of 
sophisticated instruments are required (Bassbasi 
et al., 2014). Recently, Fourier transform infrared 
(FT-IR) spectroscopy has become an emerging well-
accepted analytical technique, due to its simplicity 
with advantages in terms of cost per sample. It 

achieves high analysis speed and requires little or 
no sample preparation. FT-IR spectroscopy has been 
widely used as an analytical tool in many laboratories 
and industrial sectors such as food agricultural (De 
Luca et al., 2011; Aouidi et al., 2012), petrochemical 
(Roman et al., 2008; Bassbasi et al., 2013), textile 
(Langeron et al.,  2007) and pharmaceutical (Wu 
et al., 2008). FT-IR data have been often combined 
with chemometric techniques to develop methods of 
classification and characterization. This approach has 
been found to be very useful in many applications, 
due to the ability of these methods in achieving the 
spectral resolution of the FTIR signals. Up to now, a 
lot of studies have been published on the utilization of 
near and mid FT-IR for authentication, identification 
or classification of many agro-foods, notably olive 
oils (Sinelli et al., 2010; Sinelli et al., 2010) and table 
olives (Casale et al., 2010) by multivariate statistical 
analysis of spectral data. FT-MIR has been applied 
to olive leaves to discriminate between five Tunisian 
cultivars (Aouidi et al., 2012) and to predict nutritive 
composition (Fernandez-Cabanas et al., 2008).

The aim of this study is to develop, by FT-MIR 
spectroscopy associated to chemometric treatment, a 
direct and rapid test method that quantified oil content 
before harvest of olive fruit. This approach can be 
considered a fast, clean and affordable methodology 
that allows producers to improve fruit harvesting and 
storage.
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Materials and Methods

Olive fruits sampling
In this work, 80 samples of olive have been 

quantitatively investigated. All these samples of 
olives are analyzed four times per sample by FT-
IR in a range from 4000 and 600 cm-1. The olive 
fruit samples are picked from trees in Beni Mellal 
area (center of Morocco) and grown in the same 
agronomical and climatic conditions. The investigated 
concentration of oil content in olives varied from 8 to 
21%. At the beginning, 60 samples are prepared. 50 
are randomly selected for calibration (Cal) and 10 for 
external validation (Val 1). In separate experiments, 
two new sets (Val 2 and Val 3) of 20 samples (10 
samples per validation), are prepared to assess the 
model reproducibility. 

FT-IR analysis
FTIR spectra are obtained using a Vector 22 

Bruker FTIR Spectrophotometer equipped with an 
attenuated total reflectance accessory (ATR single-
reflexion, Diamond, incident angle 45o), DTGS 
detector, Globar (MIR) source and KBr Germanium 
separator, with a resolution of 4 cm-1 at 98 scans. 
Spectra are scanned in the absorbance mode from 
4000 to 600 cm-1 and the data are handled with OPUS 
logiciel. Analyses are carried out at room temperature. 
The background is collected before each sample was 
measured.

Extraction of olive oil    
Olive oil is contained in tiny pockets of the olive 

cells, called vacuoles. In order to recover this oil, the 
wall of the pockets and therefore the first cells of olives 
must be broken. This operation is called grinding. In 
most cases, the olives are completely crushed, i.e. 
with their core. This gives us a paste having more 
or less liquid consistency, depending on the varieties 
of olives and the time of picking. As the grinding is 
not sufficient to break all of the vacuoles in order to 
release the maximum amount of oil, mixing is applied 
to the dough. Thence, combination of grinding and 
mixing leads to a dough with solid materials (debris 
of nuclei, of epidermis, of cell walls...) and fluids (oil 
and vegetation water, i.e. the water in the cells of 
the olive). After that, comes the phase of separation, 
which consist first in separating the solid part (called 
grignon) from the fluid part (called margine) and last 
in separating the oil from the vegetation water (the 
settling) where the oil content is obtained in fruits 
using 250 grams of fresh mesocarp.

Partial least square regression (PLS) theory
PLS is a supervised analysis which is based on 

the relation between the signal intensity and the 
characteristics of the sample (Beebe et al., 1987). 
Interference and overlapping of the spectral information 
may be overcome by using powerful multicomponent 
analysis such as PLS regression. La PLS (Fuller et 
al., 1978) allows a sophisticated statistical approach 
using spectral region rather than unique and isolated 
analytical bands. The first step is to perform a 
calibration model. This involves collecting a set of 
reference calibration samples, which should contain 
all chemical and physical variations to be expected in 
the unknown samples, which will be predicted later. 
The model was built by full cross-validation methods 
during the calibration development. The optimal 
number of PLS Latentes variables (LVs) were found 
according to the full cross-validation procedure.  The 
second step is to test the model using a prediction set 
(different to the calibration one), i.e. to compare the 
values obtained by the model to the values obtained 
by the reference method. The evaluation of the errors 
in the calibration is estimated by computing the 
standard error of calibration (SEC) after comparing 
the real concentration with the computed one for 
each component. The formula for the standard error 
of calibration is:

where Ci is the known value, Ci
’ is the calculated 

value, N the number of samples and p is the number 
of independent variables in the regression optimized 
by cross validation.
    The standard error of prediction (SEP) gives an 
estimation of the prediction performance during the 
step of validation of the calibration equation:

Where  Ci is the known value, Ci
’ is the value 

calculated by the calibration equation, and M is the 
number of samples in the prediction set. Another 
useful parameter is the relative error of prediction 
(REP %) that shows the predictive ability of the 
model. This is calculated from the equation: 
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Quality assessment of the obtained results is discussed 
by comparison of predicted values versus measured 
values, both for calibration and for validation data 
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sets. All chemometrics calculations were performed 
using the Unscramble x software version 10.2 from 
CAMO (Computer Aided Modeling, Trondheim, 
Norway) was used for chemometric treatments of 
FTIR-ATR data spectra. 

The predictive ability of the model should also 
be expressed by the bias and the square of correlation 
coefficient (R2) also called determination coefficient, 
usually called Q2 in prediction. The regression 
coefficients are the numerical coefficients which 
express the link between the predictor variations 
and the response variations. The bias is systematic 
difference between predicted and measured values. 
The bias is computed as average value of the residuals. 
The residual is the measure of the variation which 
is not taken into account by the model. The residual 
for a given sample and a given variable is computed 
as the difference between observed value and fitted 
(projected or predicted) value of the variable on the 
sample.

Results and Discussion          
                                           
Typical FTIR spectra of olive fruit                                                                                  

Fourier transform infrared (FT-IR) spectra 
obtained for 80 samples of olive fruit are simulated 
by visual inspection. One spectrum is the average of 
4 scans of the same sample of olive on FT-IR. In this 
case, 80 samples of olives are made from 80 different 
crop samples. The average spectra of all considered 
samples are presented in Figure 1.

We have used the entire spectral range 4000-600 
cm-1 as a starting point for the investigation. According 
to the literature (Terouzi et al., 2011), the region 
between 2400 and 2300 cm-1 was discarded before 
the chemometric elaboration because the signal/
noise ratio is low and the signal variation resulted 
to be independent of the sample composition. The 
region between 4000 and 3033 cm-1 is also removed 
due to the water which is instrumental noise and 
brings useless information (Dupuy et al., 2010). All 
the spectra are dominated by two peaks at 2860 and 
2850 cm-1, due to bands arising from asymmetrical 
and symmetrical stretching vibrations of methylene 
(–CH2) groups and strong bands between 1750 and 
1650 cm-1 arising from the stretching vibration of the 
ester carbonyl functional groups of the triglycerides. 
The bands from 1480 to 1450 cm-1 is assigned 
to the bending vibrations of the –CH2 and –CH3 
aliphatic groups (Shiroma et al., 2009). The visual 
examinations of the spectral variations don’t permit 
to apprehend clearly the difference between chemical 
structure and chemical species concentration in olive 
fruits. Chemometric treatments are, often, applied in 

order to extract information from the spectral data 
set.

PLS modeling
The PLS model is built by considering the two 

frequency intervals 3000–2400 cm-1 and 2300–
600 cm-1 with X as variable and the Y variables is 
associated to the oil yield. The PLSR models are 
evaluated using coefficient of determination (R2) in 
calibration, root-mean-square error of calibration 
(RMSEC) and cross validation (RMSECV). The 
performance of the PLSR models on the independent 
validation set is assessed using R2, RMSEP and the 
residual prediction deviation (RPD).

Here, the criteria of classifying RPD values 
(Mouazen et al., 2006) is adopted as follows: an RPD 
value below 1.5 indicates that the calibration is not 
usable; an RPD value between 1.5 and 2.0 indicates 
the possibility of differentiating between high and 
low values; an RPD value between 2.0 and 2.5 makes 
possible approximate quantitative predictions. For 
RPD value between 2.5 and 3.0 and beyond 3.0, 
the prediction is classified as good and excellent, 
respectively. Generally, a good model should have 
high values of R2 and RPD, and low values of 
RMSEC, RMSECV and RMSEP.

The resulting model seems to be able to 
determine the oil yield for 50 samples of olives 
fruits. As can be seen from Figure 2. The PLS model 
is validated by full cross validation. The obtained 

Table 1. Explained variances (%) of PCs used in the PLS 
model

Explained factor 
0

factor 
1

factor 
2

factor 
3

factor 
4

factor 
5

factor 
6

factor 
7

Calibration 0 86,35 96,96 98,53 99,45 99,85 99,91 99,93
Validation 0 84,59 96,68 98,12 99,08 99,69 99,83 99,87
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Figure 1.  Mean FT-IR spectra of olives fruits
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Figure 2. Plot of the predicted and measured values for 
olives fruits yield oil (%), obtained from the final PLS 

model developed from the MIR spectra
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the statistical parameters  RMSEC,  RMSECV and  
R2 are summarized in figure 2. The coefficient of 
determination (R2) of 0.99, RMSEC of 0.38 and 
RMSECV of 0.51, could be considered satisfactory. 
Seven VLs are necessary to have a good PLS 
performance. Table 1 lists the explained variances 
from the developed model.

Determination of oil content in the new samples
For application, the proposed analytical method is 

applied to determine the oil yield in 30 new samples, 
devised in 3 groups of external validation (10 samples 
for each group), and collected from different regions 
of Beni Mellal. For each sample, the target parameter 
is carefully estimated using the traditional method 
of oil extraction and the optimized PLS one. The 
obtained results are given in tables 2 and 3.

As clearly indicated in Table 3, the FTIR-PLS 
method is an effective method for estimating oil yield 
in olive fruits before extraction. The results indicate 
that, there is no significant difference between the 
reference methods and the proposed one. The PLS 
model for the FT-IR data treatment appears to be 
appropriate therefore. 

Conclusion

For this study, our ATR-FTIR-PLS based strategy 
is developed for determination of content oil in fresh 
olive. FT-IR spectroscopy coupled to chemometrics 
techniques is reported as an adequate method for 
determination of content oil in olive fruit, without any 
previous sample pretreatment and sample destructive 
manipulation. The analysis is directly performed on 
a section of the olive mesocarp in the tree to give a 
complete fingerprint of olive without the need sample 
preparation. The results shows that MIR spectroscopic 
technique, associated with chemometric elaboration, 

can be a reliable way for predicting the content oil 
in olive fruits in advance. Therefore, the proposed 
spectroscopic method furnishes a nightly convenient 
alternative in terms of time and solvent saving for 
routine analysis of large number of olive samples.  
This approach can be considered fast, clean and 
affordable methodology that allows producers to 
improve fruits harvesting and storage.
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